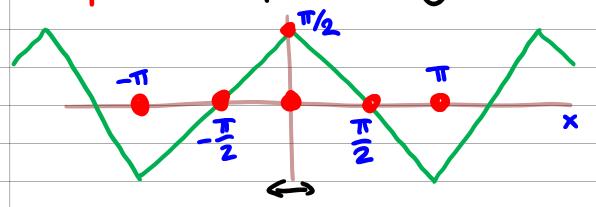
Mindeture 3E Examples of Fourier series

lecall, 21-periodic function f(xx21)= f(x) can be represented


$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{80} a_n \cos^{n} \frac{1}{1} + b_n \sin^{n} \frac{1}{1}$$

where

$$a_n = \pm \int_{-\infty}^{\infty} \cos^{n\pi} f(x) dx \qquad n = 0,1,2...$$

$$b_n = \frac{1}{L} \int_{-L}^{L} \sin \frac{n\pi x}{T} f(x) dx \quad n = 1,7,3...$$

Example A 211-periodic triangle wate

can be defined by the cordilions

$$f(x) = \begin{cases} x + \frac{\pi}{2} & -\pi \leq x < 0 \text{ and } f(x+2\pi) \\ \frac{\pi}{2} - x & 0 \leq x < \pi \end{cases}$$

This has pervol L=271 half-ported L=71 and is an even for of x.

$$= \frac{2}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{2} - x\right) \cos nx \, dx$$

$$= \int_{0}^{\pi} \cos nx \, dx - \frac{2}{\pi} \int_{0}^{\pi} x \cos nx \, dx$$

$$= \frac{1}{n} \sin n\pi - 0 = 0$$

$$= -\frac{2}{n} \int_{0}^{\pi} x \cos nx \, dx$$

$$f(x) = \sum_{\text{odd } n} f(x) =$$

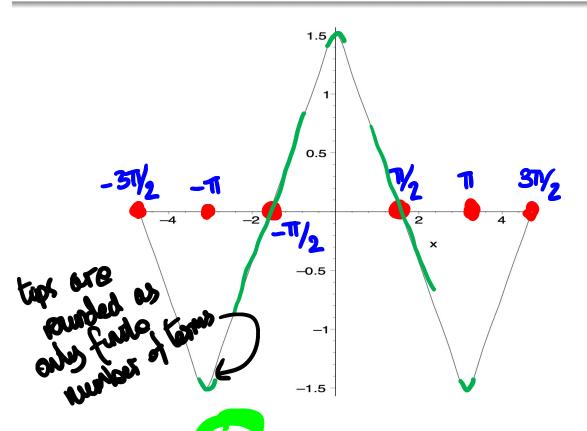
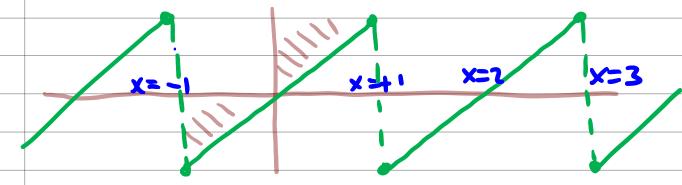



Figure 1: The first 10 terms in the Fourier series of f.

MTHS2007 Advanced Mathematics for Engineers

15

Example g(x) is the soutcoth function defined by the conditions

Thus is an edd fundion of x - FS contains only sines!

$$a_0 = \int_{-1}^{1} d(x) dx = 0$$

$$a_n = \int_{-1}^{1} \cos n\pi x \, g(x) \, dx = 0$$

Without doing further calculation we know $g(x) = \sum_{n=0}^{\infty} b_n \sin n\pi x$

$$D_{n} = \int_{-1}^{+1} x \sin n\pi x \, dx$$

$$= \int_{-1}^{1} x \left(\frac{1}{n\pi} \cos n\pi x \right) \, dx$$

$$= \left[-\frac{1}{n\pi} x \cos n\pi x \right]_{-1}^{1} + \frac{1}{n\pi} \int_{-1}^{+1} \cos n\pi x \, dx$$

$$= -\frac{2}{n\pi} \cos n\pi$$

$$= -\frac{2}{n\pi} \left(-1 \right)^{n}$$

$$= -\frac{2}{n\pi} \left(-1 \right)^{n} \sin n\pi x$$

$$= \frac{2}{n\pi} \left(\sin n\pi x - \frac{1}{2} \sin 2\pi x + \frac{1}{3} \sin 3\pi x \right)$$

$$+ \cdots$$

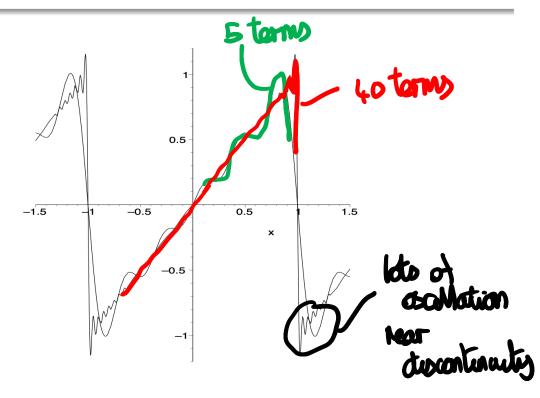


Figure 2: The first 5 terms and the first 40 terms in the Fourier series of g.

MTHS2007 Advanced Mathematics for Engineers

18

